
An Overseer Control Methodology for Data Adaptable
Embedded Systems

Sean Whitsitt
University of Arizona

1230 E. Speedway Blvd
Tucson, Arizona, USA

whitsitt@email.arizona.edu

Jonathan Sprinkle
University of Arizona

1230 E. Speedway Blvd
Tucson, Arizona, USA

sprinkle@ece.arizona.edu

Roman Lysecky
University of Arizona

1230 E. Speedway Blvd
Tucson, Arizona, USA

rlysecky@ece.arizona.edu

ABSTRACT
The performance of software algorithms can be improved by per-
forming those algorithms on specialized embedded hardware. How-
ever, complex algorithms that rely on input data at runtime for
configuration have a combinatorial explosion of possible config-
urations, which has historically put hardware acceleration out of
reach for applications wishing to serve large configuration spaces.
Data adaptable embedded systems overcome this limitation by al-
lowing for hardware reconfiguration during runtime, but the com-
plexity of the specification of these systems is difficult to manage
with traditional techniques. In this paper, a modeling approach is
discussed in order to concurrently model two aspects of the final
system: dependencies between algorithm tasks, and desired hard-
ware configurations for each task. The contribution of the work
is the model-based generation of hardware and software tasks, as
well as a control scheme customized to each model that oversees
the dynamic reconfiguration process.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; D.2.6 [Software Engineering]: Pro-
gramming Environments—Integrated environments, Graphical en-
vironments; D.3.2 [Programming Languages]: Language Classi-
fications—Multiparadigm languages

General Terms
Design; Languages; Performance

1. INTRODUCTION
As the demand for more complex embedded devices grows, a prob-
lem arises. As it stands, embedded hardware is limited in its scope
by the available hardware real-estate. Data-Adaptable Reconfig-
urable Embedded Systems (DARES) have been proposed to ad-
dress this limitation. The purpose of DARESs are to reconfigure
hardware at runtime in order to improve the performance of an al-
gorithm while retaining the flexibility and configurability of soft-
ware [14].

The DARES Modeling Language (DaresML) provides an environ-
ment in which a designer can structure an algorithm, and specify
implementation parameters [6]. DaresML allows a user to con-
struct a model for each of the tasks and the respective configura-
tions for those tasks involved in his or her solution. Another model
can then be created to represent the dataflow interconnections be-
tween each of these tasks. From these models all of the necessary
code can be generated for the hardware profiles that represent the
user’s solution.

DaresML requires the designer to already have software and hard-
ware implementations of each task configuration, but the language
provides semantic structures to use while writing or porting that
software. These semantic structures allow the user to build generic
solutions to tasks that can then be interpreted by DaresML into
the many different hardware and software configurations for those
tasks.

The contribution of this paper is the DARES runtime reconfigura-
tion process, which is partially fixed, and partially derived from the
structure and content of the models built in DaresML. This is re-
ferred to in this paper as the Overseer. This paper extends previous
work where the prototype hardware system was demonstrated [13]
and the structure of the modeling language was described [6, 14].

2. BACKGROUND
Field Programmable Gate Arrays (FPGAs) are the cornerstone of
reconfigurable computing [4], given their ability to perform various
tasks in hardware, and to store hardware configurations as files. As
such, FPGAs are uniquely suited to algorithm acceleration, since
they can perform specific tasks in hardware, and can also include an
on-board microprocessor (in hardware) to perform software tasks.

Fig. 1 shows a conceptual example of reconfigurable computing,
and is discussed in detail in [13]. In this particular example appli-
cation there are four tasks to be performed (Tasks A through D).
An area off-chip holds several different hardware specific imple-
mentations for each of these tasks. Each of these implementations
or configurations fits together with a different data profile. In the
example shown, the application has received a new data profile and
is about to reconfigure the 512x512 version of Task A with the
1024x1024 version of Task A. However, note that the current hard-
ware implementation of Task B matches the new data profile. As
such, the microprocessor will begin processing all of the data for
Task A, while using the hardware implementation for Task B. As
soon as the new Task A is written to the FPGA, it will take over for
the microprocessor in processing the data for Task A.

!

!"#$%&'%()*+&

&

"""#$##$$$$!

,$%#$%&'%()*+&

&

#$$##$$$"""!

-.&

!"#$%&'()*+,-"./012.

/*'0&1&&&&&
23456&
3457&

/*'0&
8&&&&&

239:7&

/*'0&
;&

2;*'$*<7&

3"4.5%6)7.
87*"+9.

&

!!!""""#"#""$

%&'$()*)$+,-./0&1$
#%&'()!
&!*+,-!.!/#"234#"230!
%1%123!
&!*+,-!4!/5+6787)!9:;3!
&!*+,-!<!/5,,-,$6&7/0/&8*3!

:+8;.2.....
<=>?@A.
=>?@B.

=>&/*'0&!+#<)+)"%*%?@"'&2,AABCD?#7&

/*'0&
1&

!
:+8
;.
2.

$

/*'0&
1&

!
/*'0&
;&

!
/*'0&
1&

!
/*'0&
1&

!
/*'0&
1&

/*'0&
8&

/*'0&
1&

!
/*'0&
1&

!
/*'0&
1&/*'0&
1&

!
/*'0&
E&

/*'0&
1&

Figure 1: Reconfigurable computing relies on splitting an appli-
cation into many different tasks. These tasks are then written in
hardware and can be loaded onto the chip depending on parameters
in a hardware data profile. Image from [13].

It is important to note that the DARES methodology presents a
domain-specific approach to design streaming applications. As such,
it is particularly well suited to applications that rely on a stream of
incoming data stream whose metadata may change. The applica-
tion shown in Fig. 1 is an adaptation of the streaming JPEG image
compression algorithm. The JPEG algorithm provides a simple ex-
ample on which to test and validate the DARES methodology.

This approach to embedded systems becomes increasingly impor-
tant as demand for more complex embedded systems increases.
Certainly more transistors can be packed onto a chip, but there are
physical and economical limitations to that approach. Adding more
transistors to solve a problem gets exponentially expensive upon
the realization that the number of hardware configurations for an
application are exponentially related to the number of parameters
for that particular application. The reconfigurable computing ap-
proach allows designers to leverage the fact that area on storage
devices is much cheaper than on processing devices, as well as the
nonfunctional benefit that power consumption in hardware is less
than software for many functions [8, 7, 15].

The methodology and tools in this paper provide a domain spe-
cific modeling environment in which to design embedded solutions
for data streaming applications. Other languages currently sup-
port streaming applications for both software (OpenCL, OpenMP,
and StreamIt [1]) and hardware (Streams-C [5], ImpulseC [11],
ROCCC [12]). However, none of these seek to provide a modeling
framework as a solution. As such, the approach in this paper may
be readily adapted to provide generated artifacts in the previously
mentioned languages.

The model of computation demonstrated in this paper can be best
described as a cross between dynamic dataflow and communicat-
ing sequential processes. Dynamic dataflow (DDF) is a computa-

tion method that is capable of processing data in parallel but not
necessarily in order [3, 2]. It takes advantage of the portions of
a data stream which are not dependent on one another to do this.
However, any dependencies between processing tasks can cause
this approach to halt while slower processes catch up to the faster
ones. Communicating sequential processes is a formal method for
describing how concurrently running components in a system ar-
chitecture should communicate [9, 10]. This is accomplished by
having primitive processes representing the components communi-
cating via events. In such an architecture, an event occurring in one
process would have consequences in (thus communication with)
other processes. DARES combines these two by using streamed
tasks that process information as they receive it (DDF) and that
communicate by writing to/reading from FIFO buffers (CSP).

3. DARESML
3.1 Modeling Language Design
DaresML has been described in previous publications [6]. This pa-
per describes new modeling language developments for building
models of tasks, configurations for those tasks, and the modeling
of data flow in a DARES application, in order to generate the re-
configuration controller.

Fig. 2 shows the most recent metamodel for DaresML, which is ex-
pressed in MetaGME [16]. This metamodel includes updates done
for the research in this paper, but the essential elements of previous
iterations are also present. There are two paradigms which repre-
sent any given DARES project: a DomainDefinition and a Domain-
Setting. The DomainSetting is where data flow between tasks can
be modeled while the DomainDefinition is where tasks and their re-
spective configurations are defined. Tasks describe unique opera-
tions that the resulting embedded system must accomplish. Configs
are the different methods for achieving those individual operations,
through hardware and software. Parameters describe how the Con-
figs differ from one another. Ins and Outs describe the inputs and
outputs of the Tasks while LConnections describe how Ins and Outs
atoms are connected. TINs and TOUTs describe the terminal input
and output of a system while TINConnections and TOUTConnec-
tions describe how TINs and TOUTs are connected to other objects.

The new fields in this metamodel all provide vital information to
the interpreter for DaresML so that the artifacts related to the Over-
seer can be generated. The Includes field allows a user to specify
external include files that may be critical to different task configu-
rations. The TokenType and OtherType fields provide information
to the Overseer architecture about the type and therefore size of the
data being piped through the system. The Producer and Consumer
fields then allow the user to specify the location for the specialized
terminal producer and terminal consumer processes that are meant
to contain the new semantic structures for managing the reconfigu-
ration process.

3.2 Instance Model
Fig. 3 shows a simple example that has been used as a demon-
stration in previous DARES research, for JPEG image compres-
sion (which has been extended into the updated DaresML described
herein). The process is straightforward and runs a stream of data
through four total tasks in succession before outputting a com-
pressed data stream. A benefit of this example is that the task com-
plexity is suitable for discussion in a brief paper.

Fig. 4 demonstrates how parameters are defined in DaresML. At the
top level where the task definitions reside, the main parameter list

DomainParadigm: MetaGME Project: DaresML Model: ParadigmSheet Aspect: ClassDiagram Time: ‰

t PM

Parameter

<<Model>>

Value : field

Type : field

TOUTConnection

<<Connection>>TINConnection

<<Connection>>

TOUT

<<Atom>>

Consumer : field

Includes : field

NumTokens : field

TokenType : enum

OtherType : field

TIN

<<Atom>>

Producer : field

Includes : field

NumTokens : field

TokenType : enum

OtherType : field

LConnection

<<Connection>>

TaskInstance

<<Reference>>

Out

<<Atom>>

NumTokens : field

TokenType : enum

OtherType : field

PortId : field

Config

<<Model>>

Includes : field

Mode : enum

SourceFile : field

In

<<Atom>>

NumTokens : field

TokenType : enum

OtherType : field

PortId : field

Task

<<Model>>

DomainDefinition

<<Model>>

DomainSetting

<<Model>>

DomainFolder

<<Folder>>

0..*

0..*

0..*

0..*

0..*

0..*

dst

0..*

0..*

src0..*

dst0..*
src

0..*

0..*

dst

0..*
src

0..*

0..*

0..*

0..*

0..*

0..*

0..*

Figure 2: The metamodel for DaresML defines how users can model DARES projects. This model has been updated from [6], though the
core components have not changed.
definitionsParadigm: DaresML Project: jpeg Model: DomainDefinition Aspect: DefinitionAspect Time: ″

 AM

Figure 3: Model of the streaming JPEG example application. It
consists of four application tasks plus a terminal producer and ter-
minal consumer.

(with default values) can be constructed. These top level parame-
ters define what parameters are available to configure the hardware
profiles of the system. At the lower level inside of the configura-
tions of a particular task is where the parameter list for that task can
be constructed. Any of the parameters defined at this lower level
will define the necessary parameter requirements for that task. For
instance, in the example shown in Fig. 4, the hardware implementa-
tion of the colDCT task requires that the BlockSize parameter be set
to 64 (the value attribute shown in the figure) in order for it to work
properly. As such, any time the BlockSize parameter is set to 64, the
system will use the hardware version of the colDCT task, whereas
when the parameter is not 64 it will use the software version.

Note that these parameters also allow the modeling language to
generate multiple configurations from the same user generated source
file (see Section 5.3).

4. OVERSEER METHODOLOGY
It is important for the reader to note that the Overseer Methodology
described in this paper is not a single artifact (nor even a collection
of many artifacts). Instead this methodology describes the process
and semantics by which runtime FPGA reconfiguration is achieved.

The semantics necessary to the Overseer Methodology are two fold.
First, DaresML makes no assumptions about the data stream for

BlockSize Attributes
colDCT Definition

JPEG Example: Task Definitions

Task Definitions

hwParadigm: DaresML Project: jpeg Model: Config Aspect: ConfigAspect Time:

 AM

i0

o0

BlockSize

hwParadigm: DaresML Project: jpeg Model: Config Aspect: ConfigAspect Time:

 AM

i0

o0

BlockSize

hwParadigm: DaresML Project: jpeg Model: Config Aspect: ConfigAspect Time:

 AM

i0

o0

BlockSize

Parameters

settingsParadigm: DaresML Project: jpeg Model: DomainSetting Aspect: SettingAspect Time:

 AM

BlockSize

i0 o0

zz

i0 o0

Quant

i0 o0

colDCT

i0 o0

rowDCT

BitsTransform

Figure 4: The JPEG example has three main parameters: Block-
Size, Transform, and Bits. Those parameters and their values de-
fine which hardware configuration will be used for any given data
stream. The inside of a configuration of the colDCT task is also
shown in the figure. This shows that the BlockSize parameter is the
only parameter that defines that task. It also shows that the Block-
Size parameter has attributes for its value and that value’s type.

start Init Threads
do/LoadDefaultProfile

Control/Producer
do/UserDefined

Process Data

Run
do/PerformTasks

start

Idle

NewData

end

Shutdown

Reconfigure
start

Idle
reconfigRequest/Reconfig
exitRequest/Shutdown

Load Hardware
do/LoadHardware

Optimize
do/BuildOptimalProfile

Reconfig

end

Shutdown

end
Run Join

JoinJoinRunRun

/NewData

Figure 5: The state-chart diagram of the Overseer Methodology.
This figure shows that the basic concept is to have a user defined
control thread, a generated reconfiguration thread, and the task
threads (shown here as one ‘process’ thread for simplicity). These
three threads are spawned by an initialization process then the ap-
plication completes when all three threads complete.

any given application, so the user needs the ability to determine
when the FPGA will be reconfigured. Second, the user needs to be
able to link the different hardware configurations for tasks to the
data in a particular stream. The first concept is handled by several
semantic commands given to the user, while the second is handled
by parameters and parameter profiles. Fig. 5 shows the state flow
of the Overseer methodology. The state-chart shows three threads
spawned by an initialization process from a main thread. The Pro-
cess Data thread is a simplification of the multi-threaded task ar-
chitecture that would process the data for a given application. The
Reconfigure thread processes reconfiguration requests made by the
user. It does this by selecting an optimal hardware profile based on
the current profile parameters. Then loading that profile is loaded
to the FPGA before the thread returns to an idle state.

Fig. 6 shows an example of how a user might define the Con-
trol/Producer thread. Aside from loading data, DaresML provides
the semantics that the user can employ to define the states shown
in the chart. The Initial Reconfigure state shown in the figure is
accomplished by the same semantic structures as the Update Hard-
ware state. Initial Reconfigure simply updates the hardware with
the default configuration. Also, the Update Hardware state first
performs some necessary actions to ensure that the system begins
processing data using software tasks if the necessary hardware con-
figurations for those tasks are not currently in hardware. This is ac-
complished by the ShiftToSoftware method. The Reconfig method
refers to Fig. 5. When run from the Control/Producer thread, Re-
config informs the Reconfigure thread that it should start reconfig-
uring the system again. If for some reason the Reconfigure thread is
still processing a previous reconfiguration request, it will perform
the new reconfiguration once it reaches it’s Idle state. DaresML
does provide the user with a WaitForReconfigure command that
would prevent Control/Producer thread from continuing until the
Reconfigure thread reaches it’s idle state, but semantic structure is
unused in this simple example.

4.1 Parameters

Control/Producer (Example)

start

Initial Reconfigure
do/Reconfig

Update Hardware
do/ShiftToSoftware

Set Parameters
do/AskForInput

end

Exit

Load Data
new/LoadNewData
exitRequest/Exit

LoadNewData
Process Data

do/FeedDataToTasks

/Reconfig

Figure 6: This is an example of how a user defined control thread
might act. DaresML provides the user with the semantic structures
to set parameters, update the hardware, and the initial reconfigura-
tion. The user is responsible for loading the data stream. Note that
the Reconfig method refers to Fig. 5.

Parameters are a new feature of DaresML. Parameters are specified
in the application model at both the DomainSetting level and the
Configuration level (Fig. 2). All parameters specified in a model,
regardless of where they are specified, must be specified with a
value. The value given to a parameter in the model is the default
value for that parameter. Parameters specified in the DomainSetting
are global parameters. These are the parameters that will define
the overall hardware profile for any input data stream. Parameters
specified in a configuration of a given task are then the necessary
parameters for that configuration to be valid.

For example, in Fig. 1 the data profile shows two parameters, one
that stores a Block Size, and one that stores a type of Wavelet trans-
form. These are parameters specified at the DomainSetting level.
Also, in Fig. 1 there are two configurations shown for Task A. The
current configuration of Task A has a parameter for a Block Size of
512, while the configuration that is about to replace it has a param-
eter for a Block Size of 1024. In both of these configurations this
parameter would be specified at the configuration level.

Two other important facts. First, parameters that are defined at
the configuration level, but not at the DomainSetting level act as
constants. Second, parameters specified in a software configuration
are not considered necessary for that configuration since software
configurations are the catchall if there is no hardware configuration
available that meets the necessary parameter requirements. Instead
software configurations simply access the current parameter profile
for parameter values.

4.2 Semantics
DaresML provides the user with a total of four semantic commands
that he or she can issue at any point in any task. It is expected that
these commands will be issued in a terminal producer which man-
ages the raw input data stream to the application, but that is not a
strict limitation placed on the user by DaresML. All DARES appli-

cations are created with two parameter profiles for these commands
to operate on: a current profile which stores the configuration that
the application tasks access, and a new profile which stores the con-
figuration for the next data stream.

4.2.1 Update
The update command begins the reconfiguration process. First, an
atomic reconfiguration occurs that reconfigures the FPGA using the
new profile, based on available hardware tasks. Second, as a part
of the atomic reconfiguration the new profile is copied into the cur-
rent profile. Third, a reconfiguration task is primed and eventually
executed to move new hardware tasks onto the FPGA.

4.2.2 Reset
The reset command resets the new parameter profile to the default
parameter values that the user can specify in the application model.

4.2.3 Wait
The wait command causes a task to block until a reconfiguration
has occurred. This is useful (but not necessary) to prevent a new
data stream from being operated on by tasks with the incorrect pa-
rameter configuration.

4.2.4 Set Parameter
The set parameter command allows the user to set the value of pa-
rameters in the new parameter profile.

4.3 Code Generation
There are two sections of code that are always generated as a part
of the Overseer Methodology.

4.3.1 Atomic Reconfiguration
The atomic reconfiguration process that occurs first in the update
semantic command is necessary to ensure that the new profile is
copied into the current profile before any new data is processed.
Also, this function helps prevent new data streams from being pro-
cessed by hardware tasks with inappropriate parameter configura-
tions.

4.3.2 FPGA Reconfiguration Task
The FPGA reconfiguration task is a software task that is present
in any DARES project. This task handles optimizing the FPGA
hardware profile for the application and actually managing moving
hardware tasks to and from the FPGA during runtime.

5. USER GENERATED SEMANTICS
As mentioned previously, DaresML provides the user with certain
semantic structures that can be used to control the reconfiguration
process. These semantic structures are used in the development of
the code for application tasks and for the terminal producer and
terminal consumer tasks.

5.1 Terminal Producer
The terminal producer is the main entry point for an application.
This is also where a user would define the Control/Producer thread
shown in Fig. 5 and Fig. 6. It is here that a user would collect data
and stream it into the application tasks that he or she has modeled
with DaresML. This particular task provides a clear demarcation
between processing application data and controlling the reconfig-
uration process as per the Overseer Methodology. However, as

DaresML makes no assumptions about data streams the user is not
limited to controlling the reconfiguration process from this task. It
is only highly recommended.

5.2 Terminal Consumer
The terminal consumer is the main exit point for an application. It
is here that a user should collate the data stream into whatever form
the user requires. Under the Overseer Methodology there are no
necessary procedures that the user must follow when finalizing data
output, but this is a good location for a user to indicate when a data
stream has finished processing. In this way the user can prevent
a reconfiguration from occurring before a given data stream has
completed processing. As with the terminal producer, DaresML
does not force a terminal consumer on the user. DaresML only
encourages the user to make use of this clear demarcation between
data control and data processing.

5.3 Parameters
DaresML provides a simple way for users to access parameters in
the current parameter profile. A user can simply use the name of
the parameter as if it were a variable in his or her code. The mod-
eling language takes over from there and handles accessing that
parameter correctly.

Parameters allow DaresML to generate multiple hardware/software
configurations from a single user generated source file. For ex-
ample, the difference in C++ code for an implementation with a
BlockSize of 64 versus 32 may just be the number of times a loop
iterates. However, in a hardware implementation this difference
may be drastic, but the C++ code that represents that can just be a
parameter. DaresML then interprets that parameter differently for
each task configuration, depending on the specifics that the user has
specified in the model. This provides a simplification for the user
where only one source file need be created for each task. Though,
the user does have the option of using different source files for the
configurations of a task in case there are differences that cannot be
encapsulated in a parameter.

6. CONCLUSIONS AND FUTURE WORK
This paper demonstrates that the Overseer Methodology for the
control of FPGA reconfiguration provides a user with the neces-
sary tools to effectively model a whole reconfigurable computing
system. DaresML provides modeling and semantic tools for gen-
erating task architecture and configurations, data flow models, and
reconfiguration control.

So far the scope of this research has been rather limited in its fo-
cus. The next step will be to tackle a more complicated example to
further verify the efficacy of the Overseer Methodology. In order
to keep DARES within the trend of image compression streaming
applications the next research task will be to implement JPEG2000.
This will allow for the refinement of DaresML.

Furthermore, a JPEG2000 implementation will allow for the testing
of other optimization techniques. For instance, the configuration
of data in the input stream may effect performance beyond simple
estimates for task latency. A future project may involve testing op-
timization techniques that actively test new strategies for optimiza-
tion by processing old streams of data with new hardware profiles
during system idle time.

7. REFERENCES

[1] S. Amarasinghe, M. I. Gordon, M. Karczmarek, J. Lin,
D. Maze, R. M. Rabbah, and W. Thies. Language and
compiler design for streaming applications. Int. J. Parallel
Program., 33(2):261–278, June 2005.

[2] Arvind and R. Nikhil. Executing a program on the mit
tagged-token dataflow architecture. Computers, IEEE
Transactions on, 39(3):300 –318, mar 1990.

[3] J. L. e Silva and E. Marques. Executing algorithms for
dynamic dataflow reconfigurable hardware -the operators
protocol. In Reconfigurable Computing and FPGA’s, 2006.
ReConFig 2006. IEEE International Conference on, pages 1
–7, sept. 2006.

[4] P. Garcia, K. Compton, M. J. Schulte, E. R. Blem, and
W. Fu. An overview of reconfigurable hardware in embedded
systems. EURASIP J. Emb. Sys., 2006, 2006.

[5] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski.
Stream-oriented fpga computing in the streams-c high level
language. In Field-Programmable Custom Computing
Machines, 2000 IEEE Symposium on, pages 49 –56, 2000.

[6] V. S. Gopinath, J. Sprinkle, and R. Lysecky. Modeling of data
adaptable reconfigurable embedded systems. In Proceedings
of the 8th IEEE Workshop on Model-Based Development for
Computer-Based Systems, pages 276–285, April 2011.

[7] J. Henkel. A low power hardware/software partitioning
approach for core-based embedded systems. In Proceedings
of the 36th annual ACM/IEEE Design Automation
Conference, DAC ’99, pages 122–127, New York, NY, USA,
1999. ACM.

[8] J. Henkel and Y. Li. Energy-conscious hw/sw-partitioning of
embedded systems: a case study on an mpeg-2 encoder. In
Proceedings of the 6th international workshop on
Hardware/software codesign, CODES/CASHE ’98, pages

23–27, Washington, DC, USA, 1998. IEEE Computer
Society.

[9] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[10] C. A. R. Hoare. Process algebra: A unifying approach. In 25
Years Communicating Sequential Processes, pages 36–60,
2004.

[11] Impulse Accelerated Technologies. Impulse codeveloper,
2012.

[12] Jacqaurd Computing. Roccc 2.0, 2001.
[13] S. Mahadevan, V. Gopinath, R. Lysecky, J. Sprinkle,

J. Rozenblit, and M. Marcellin. Hardware/software
communication middleware for data adaptable embedded
systems. In Proceedings of the 18th IEEE International
Conference and Workshops on Engineering of
Computer-Based Systems, pages 34–43. IEEE Computer
Society Press, 2011.

[14] A. Milakovich, V. S. Gopinath, R. Lysecky, and J. Sprinkle.
Automated software generation and hardware coprocessor
synthesis for data-adaptable reconfigurable systems. In
Proceedings of the 19th IEEE International Conference and
Workshops on Engineering of Computer-Based Systems,
pages 15–23, 2012.

[15] J. Mu and R. Lysecky. Autonomous hardware/software
partitioning and voltage/frequency scaling for low-power
embedded systems. ACM Trans. Des. Autom. Electron. Syst.,
15(1):2:1–2:20, Dec. 2009.

[16] Ákos Lédeczi, Árpad Bakay, M. Maroti, P. Volgyesi,
G. Nordstrom, J. Sprinkle, and G. Karsai. Composing
domain-specific design environments. IEEE Computer,
34(11):44–51, November 2001.

